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I. MEDITERRANEAN BASIN SOLVERS

Versions of two beta-plane ocean models suitable for use in the
Mediterranean have been prepared. One has two-layers and topography,
and the other is a reduced gravity one active layer model. They use both
the direct and the preconditioned capacitance matrix techniques (DCMT
and PCMT) for solving the constituent non-rectangular two dimensional
finite difference Helmholtz equations with Neumann boundary conditions.
Because the ocean models use the primitive equations there are no
special problems associated with the modeling of regions with islands,
as there would be, for example, in a model using the vorticity
stream-function formulation. DCMT is generally faster but requires more
memory than the preconditioned method, but PCMT is particularly suited
to problems with large Helmholtz coefficients. Therefore the ocean
models have been set up to use DCMT only for the external gravity wave
mode, all other modes being solved by the PCMT to save storage (these
modes have a very large Helmholtz coefficient). Appendix 1 contains a
listing of the subroutine that interfaces the ocean models and the
Helmholtz solvers. This is the only solver subroutine that need be
modified by an ocean modeler when implementing a new model geometry, and
the modifications (fully documented within the routine) only consist of
redefining a few PARAMETER values. The full ocean model and solver code
listings are far too long to include in this report, but the codes have
been delivered to NORDA. Figure 1 shows a result of a test case Western
Mediterranean ocean model simulation. The grid resolution used in this
experiment was very coarse, the simulation was designed to test the
model code rather than actually realistically represent the circulation
in the Mediterranean.

II. SOLVER FOR FLOW OVER SILLS

NORDA's existing 2-D Boussinesq flow models are for a flat bottom
only, they require the solution of Helmholtz's equation each timestep
to obtain the stream-function. A very efficient elliptic solver for
this model had previously been developed by JAYCOR, it used the FACR(O)
method and solved Helmholtz's equation over a rectangular region with
Dirichlet boundary conditions on the "bottom" and "top" boundaries, and
periodic conditions on the other boundaries. This solver was extended,
using the direct capacitance matrix technique, to allow a simple
triangular "mountain" to rise above the otherwise flat bottom. The
solver has been fully tested and has been added to the 2-D Boussinesq
flow model.

III. SOLVERS ON THE FPS-164

NORDA has ordered an FPS-164 but it has not been installed yet, this
work was therefore performed at the NATO SACLANT center in Italy. The
FPS-164 is an array processor that is attached to a host device, in this
case a VAX 750. As is was set up at SACLANT, it was run in Single Job
Executive mode (SJE), which meant that it was regarded as a batch
machine running one program at a time that was submitted from the VAX. A
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useful feature of this arrangement was that compilation and link editing
of the program took place on the host machine by means of a cross
compiler and linker. This had the effect of freeing the FPS-164 to run
only load modules (called images) that had been successfully compiled
and linked. Thus errors in compilation and linkage could be detected at
the VAX interactive use level and corrected without requiring access to
the array processor. In addition this meant that the source program,
linkage instructions and FPS-164 execution modules could be kept on the
VAX file base and edited using the VAX editors. This greatly speeded up
program development. A slight drawback when using the FPS-164 to
evaluate the speed at which code would run was the absence of an
explicit run time clock communicating with the VAX operating system.
This prevented an explicit time limit on execution being set externally
to the program and stopped timings being deduced from run time figures
as these were not available. There is an internal cycle counter that
can be reset and read by system subroutine calls (CALL SYS$CLEAR, CALL
SYS$READ, etc.) but these had to be invoked explicitly to get timing
information. The compiler had 5 levels of optimization that could be
invoked, levels 0 to 4. Only the two highest levels exploited the array
processor architecture, the highest ignoring potential storage clashes
and generally not recommended for use except with extreme caution. In
practice, code development proceeded by getting test results first on
the VAX, then from the FPS-164 with optimization set to 0 or 1, then
when these agreed, getting results for optimization 3 and then 4.

The solvers detailed in I and II above were moved onto the FPS-164,
in general they ran about 10 times faster on the FPS than on the VAX
11/750 (without a floating point accelerator board), or about 10 times
slower than on the TIASC supercomputer.
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Figure 1. Example instantaneous free surface deviation from a coarse
grid Western Mediterranean ocean model. The experiment was
designed to test the model code rather than to
realistically simulate the flow in the Mediterranean.
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APPENDIX 1

LISTING OF THE ROUTINE THAT INTERFACES
THE OCEAN MODELS TO THE HELMHOLTZ SOLVERS
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SUBROUTINE CHSLVX(HD,HT,RS, AX,AY,AC,ACKL, KK,LL)
IMPLICIT REAL (A-H,O-Z)
PARAMETER (IH=045, JH=029, KH=O02)
PARAMETER (IU=IH-1,JV=JH-1,

+ IV=IH-2,JU=JH-2)

PARAMETER (JHS=34,JOS=1, JOSM=JOS-I)
PARAMETER (MXKP=112)
PARAMETER (MXKC1=112*113,MXKC2=21*112, MXKC3=3*112,

+ KWSP=21*(112+2*21+6)
C

PARAMETER (NX=IH-2, NY=JHS-2, KQ=NY*((NX+7)/4+1)+(NY+3)/2+8)
9C

DOUBLE PRECISION AX,AY,AC(KH),ACKL
DIMENSION HD(IH,JH),HT(IH,JH),RS(IH,JH)

C
COMMON/BV/ W1(IH,JHS),W2(IH,JHS),W3(IH,JHS),W4(IH,JHS)
DOUBLE PRECISION WQ
DIMENSION MAP(IH,JHS),WQ(JHS,5),WC(KWSP)
EQUIVALENCE (W1(1),MAP(1)), (W3(1),WQ(1)), (W4(1),WC(1))

C

C*
C 1) MULTIPLE ENTRY ROUTINE FOR CARTESIAN HELMHOLTZ SOLVER(S).
C
C 2) THIS VERSION FOR THE CAPACITANCE MATRIX TECHNIQUE SOLVERS.
C
C 3) PARAMETERS CONTROLLING SOLVER:
C JHS = 2-ND DIM. OF RECTANGLE FOR SOLVER (.GE.JH).
C (JHS-2 MUST BE OF FORM P*2**Q WITH P=4,5, OR 6).
C JOS = RS(I,I) IS AT W1(I,JOS) (JOS = 1 OR JHS-JV),
C CHOOSE JOS TO MINIMISE MXKP.
C MXKP = MAX. NO. OF IRREGULAR BOUNDARY POINTS.
C MXKC? = MAX. SIZE OF CV:
C MXKC = MXKP*(MXKP+I) - THE DIRECT C.M.T.
C MXKC = MXKP*KBW - THE PRECONDITIONED C.M.T. WITH
C BANDWIDTH KBW
C MXKC1 = MAX SIZE OF CV FOR LEAPFROG T.S. AND MODE NO. 1
C ( TYPICALLY MXKC1 = MXKP*(MXKP+1), OR
C MXKP*(2*SQRT(MXKP)+I) ),
C MXKC2 = MAX SIZE OF CV FOR LEAPFROG T.S. AND ALL OTHER MODES
C ( TYPICALLY MXKC1 .GE. MXKC2 .GE .MXKC3 ),
C MXKC3 = MAX SIZE OF CV FOR RESTART T.S.
C ( TYPICALLY MXKC3 = MXKP*3 ).
C KWSP = FOR D.C.M.T. 6*MXKP,
C FOR P.C.M.T. MAX(6*MXKP,KBW*(MXKP+2*KBW+6)).
C
C ALSO IH MUST BE ODD FOR THIS SOLVER.
C
C 4) FOR RECTANGULAR REGIONS SET MXKP=MXKC?=l (PROVIDED JHS=JH).
C
C 5) COMMON AREA /BV/ IS USED FOR WORKSPACE, IT PROBABLY HAS A
C DIFFERENT LENGTH IN MODEL DRIVER SUBROUTINES 'AA****'

L C 'RS' IS USED AS WORKSPACE WHEN CALLING 'NB*CMT', THIS MEANS:
C A) IH*JH MUST BE .GE. 6*KP (TESTED IN 'CHSLVI'),
C B) 'RS' IS OVERWRITTEN ON EXIT FROM 'CHSLVS'.
C
C 6) ALAN J. WALLCRAFT, DECEMBER 1983.

c



C COMMON/SEA! Il,INX,J1,JNY

COMMON/CCXXXX/ QQH(KQ,KH) ,CV(MXKC1..MXKC2*(KH-1 )+MXKC3*KH),[§
+ EV(2,KH,2),CO(5*MXKP,KH,2),CW(MXKP,KH)
COMMON/CIXXXX/ ND(MXKP),KC(KH,2),MC(KH,2),KP,KR,LLOLD
SAVE /SEA/, /CCXXXX/, /CIXXXX/

9 C
DOUBLE PRECISION AP,ACSCAL

C
DATA RELERR / 1.E-6/
DATA ZERO, ONE / 0.0, 1.0/

C
*C DUMMY HEADER ENTRY.

C
LLOLD =2
RETURN

C END OF (DUMMY) ENTRY CHSLVX.

ENTRY CHSLVI(HD, AX,AY,AC)
C

C INITIALISE SOLVER(S) FOR ALL LAYERS AND TIME-STEPS. P~
IF (JHS.LT.JH) THEN

WRITE(6,9000) JHS,JH
STOP

ELSEIF (JOS.NE.1 .AND. JOS.NE.JHS-JV) THEN
WRITE(6,9100) JOS,JHS-JV
STOP

ENDIF
C

KC(l,1) =MXKC3
MC(1,1) =1
IF(KH.LT.2) GOTO 113
DO 13 K=2,KH

KC(K,1) = MXKC3
MC(K,l) =MC(K-1,1) + KC(K-1,1)

13 CONTINUE
113 CONTINUE

KCC1,2) =MXKC1
MC(1,2) =MC(KH,l) +KC(KH,1)
IF(KH.LT.2) GOTO 114
DO 14 K=2,KH
KC(K,2) =MXKC2
MC(K,2) =MC(K-1,2) +KC(K-1,2)

14 CONTINUE
114 CONTINUE

C
* DO 15 K=1,KH

DO 15 I=1,MXKP
CW(I,K) =ZERO

15 CONTINUE
C

Il 2
INX IH - 1
Ji1 2
JNY JHS-1
KP = 0
DO 16 L=1,2
IF (L.EQ.1) THEN



ACSCAL = 4.DO
ELSE

ACSCAL =1.DO
ENDIF
DO 16 K=1,KH

DO 11 J=1,JHS
DO 11 I=1,IH

*MAP(I,J) =1
11 CONTINUE

DO 12 J~lJH
DO 12 I=1,IH
MAP(I,J+JOSM) 1 -MAX(ZERO,MIN(HD(I,J),ONE))

12 CONTINUE
AP = -(AX + AX + AY + AY + ACSCAL*AC(K))
CALL NBREGC(IH,JHS,MAP, AX,AY,AP,

+ KR,MXKP,KP,CO(1 ,K,L) ,ND,
+ KQ,QQH(1,K), WQ)

IF (KP.GT.O) THEN
IF (KC(K,L).GE.KP*(KP+1)) THEN

CALL NBDCAP(KP,KC(K,L),CV(MC(K.L)), CO(1,K,L),ND,
+ KR,W1 ,KQ,QQH(1 ,K' -,W3,KWSP,WC)

ELSE RWKQQH1 WW3KSWC

CALL NBPCAP(KP,KC(K,L) ,CV(MC L)) ,EV( 1,K,L) ,CO( 1,K,L) ,ND,
ENDIFKQHliW2WWSC

ENDIF

16 CONTINUE
C

IF (6*KP.GT.IH*JH) THEN
WRITE(6,9200) KP,(IH*JH)/6
STOP

ENDIF
C

IF CKP.GT.O) THEN
CALL NBMAPSCIH,JHS,W1, KP,CO,ND, W2, 2)

C
DO 17 L=1,2

IF (L.EQ.1) THEN
WRITE( 6,6000)

ELSE
WRITE(6,6050)

ENDIF
DO 17 K=1,KH

KBW =KC(K,L)/KP
IF (KBW.GE.KP+1) THEN
WRITE(6,6100) K

ELSE
WRITE(6,6200) K,KBW-MOD(KBW+1,2)

a ENDIF
17 CONTINUE

ELSE
WRITE(6 ,7000)

ENDIF
C

*LLOLD =2
RETURN

C END OF ENTRY CHSLVI.

ENTRY CHSLVS(HT,RS, KK,LL, AX,AY,ACKL)



C SOLVES SINGLE HELMHOLTZ'S EQUATION
C

IF (LLOLD.NE.LL) THEN
AP =-(AX + AX + AY + AY +
CALL CHLMNN(IH,JHS,AX-,AY,AP, KQ,QQH(1,KK), WQ)
IF (KK.EQ.KH) THEN
"LOLD =LL

ENDIF
ENDIF

C
IF (KP.LE.O) THEN

DO 21 J=1,JH
DO 21 I=1,IH

HT(I,J) =RS(I,J)
21 CONTINUE

CALL HELMNN(KR,HT, KQ,QQH(1,KK),W3,W4)
ELSE
IF(JOSM.LT.1) GOTO 131
DO 31 J=1,JOSM
DO 31 I=1,IH
W1(I,J) =ZERO

31 CONTINUE
131 CONTINUE

IF(JHS.LT.JH+l) GOTO 132
DO 32 J=JH+1,JHS
DO 32 I=1,IH
Wl(I,J) =ZERO

32 CONTINUE
132 CONTINUE

DO 33 J=1,JH
DO 33 I=1,IH
Wl(I,J+JOSM) = RS(I,J)

33 CONTINUE

IF (KC(KK,LL).GE.KP*(KP+1)) THEN

CALL NBDCMT(KR,W2,W1, W1,
+ KQ,QQH(1 ,KK) ,W3,W4,

+ KP,KC(KK,LL) ,CV(MC(KK,LL)),
+. CO(1,KK,LL),ND, CW(1,KK), RS)

ELSE
CALL NBPCMT(KR,W2,W1, RELERR, Wl,

+ KQ,QQH(1 ,KK) ,W3,W4,
+ KP,KC(KK,LL) ,CV(MC(KK,LL)) ,EV( 1,KK,LL),
+ CO(1,KK,LL),ND, CW(1,KK), RS)

ENDIF
C

DO 41 J=1,JH
DO 41 I=1,IH

HT(I,J) =W2(I,J.JOSM)
41 CONTINUE

ENDIF
RETURN

6000 FORMAT(/// 5X,'RESTART TIMESTEP SOLVERS:' MI
6050 FORMAT(// 5X,'LEAPFROG TIMESTEP SOLVERS:' M!
6100 FORMAT(20X,'K =',12,5X,'DIRECT C.M.T. SOLVER.' I
6200 FORMAT(20X,'K =',12,5X,'PRECONDITIONED C.M.T. SOLVER',

+ I (BANDWIDTH ='1,'- /)
7000 FORMAT(// 20X,'RECTANGULAR REGION (AND RECTANGULAR SOLVER).'')
9000 FORMAT(// 1OX,?***** ERROR IN CHSLVI - 1

+ 'PARAMETER JHS =',14,1 MUST BE GOE. JH =',14,'



9100 FORMAT(// 1OX,t'"*** ERROR IN CHSLVI-
+ 'PARAMETER JOS =',1~4,1 MUST BE 1 OR JH-JV W,4
+ 9) ***f /)i

9200 FORMAT(// 1OX,'***** ERROR IN CHSLVI -.
+O 'CHSLVS ASSUMES THAT KP =',14I,1 IS .LE. (Ih*JH)/6 =',I 1
+ 50X,'(IF KP IS CORRECT RS CANNOT BE USED IN CALLS TO NB*CMTI,
+ I RECODE CHSLVX) " I)

C END OF ENTRY CHSLVS (CHSLVX,CHSLVI).
END
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